e Factorization and Evolution
e Resummation: an Example

e Summary



e Challenge: use AF in observables
(cross sections (o) (also some amplitudes . . .))
that are not infrared safe

e Possible if: o has a short-distance subprocess.
Separate /IR Safe from IR: this is factorization

e IR Safe part (short-distance) is calculable in pQCD

e Infrared part — example: parton distribution —
measureable and universal

e Infrared safety — insensitive to soft gluon emission
collinear rearrangements



e Just like Parton Model except in Parton Model
the infrared safe part is o,y = f(2) normalized uniquely

e In pQCD must define parton distributions
more carefully: the factorization scheme

e Basic observation: virtual states not truly frozen.
Some states fluctuate on scale 1/0Q) . ..
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Short-lived states = In(Q)
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Long-lived states = Collinear Singularity (IR)



RESULT: FACTORIZED DIS

1
F;q(CC,Q2) — / df C;q (g,%a%aas(:u)>

X ¢q/q(€7 HE, O‘s(:u))

C;q (g, %, ILLIF, Oés(,“)) X ¢q/q(€7 HE, Oés(lu))

o gbq/q has IH(MF/AQCD) - e

o (' has In(Q/p), In(ur/p)

e Often pick i = ur and often pick yur = (). So often see:
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e But we still need to specify what we really
mean by factorization: scheme as well as scale

e For this, compute F)(x, Q)

o Keep 1 = up for simplicity



e Factorization in terms of matrix elements:

WD = = 3 (X, (0) (o)) (XL 0)|h(p,0)) (20)* 4 (px —p — a)
= [ e (o) | 7420 (0) b, o)
df nyq P CVS( ) gba h(fa )
Q;G/ (& e Jontc

Pq/n(&: 1) Z / A gmidarn (pp, )\@(An)nziqm)\h(p,a»

e n/ a light-like vector opposite to p-direction.

e ¢ is renormalized at i (n- A = 0 gauge).
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~<h(p,0)\bT(€p, A) b(ép, A) | hip, o)) + O(gs)

o At zeroth order, ¢,/,({) counts the number of quarks
at fractional momentum ¢ in h(p, s). (spin average in this case)

e N(p,o)="b(p,o)b(p,o): the “number operator”:
“takes away” a quark, puts the same one back

e This suggests (a very important aside) . . .



The generalized distributions:

Faplanitm) =53 [ G 8,0) |40 "5 a0) [ )
~ (h(p+ Cp+ A, 0)| bl (zp+ A, A) b(zp, A) | h(p, ) + O(gs)

Difference: p — p’ for the “out” quark. t = A%, ( = —n - A.

At lowest order: “takes away” a quark at one momentum
puts the same kind of quark at a different momentum

Look for a cross section where this is the factorized distribution:
amplitude for DVCS: ¢'? = 0, ¢ = —Q* large, v = Q?/p - q fixed

T pa) = 53 [ e DS (o) [T () 0) o)



“Compute quark-photon scattering” — What does this mean?

Must use an [R-requlated theory
Extract the IR Safe part then take away the regularization

Let’s see how it works . . .

— At zeroth order — no interactions:

— Oar(0) — 6? 6(1 —x/€)
(Born cross section; parton model)

- Qﬁf,?c)/qf,(f) =0 0(1 =€)

(at zeroth order, momentum fraction conserved)



1
FYOwa) = [ ey (L1 0 )

x 6%, (€. pr.as(p))

g / dé 5(1— 2/€) 6(1 — €)

6?0 rd(l—x)

— On to one loop . ..



F77 AT ONE LOOP: FACTORIZATION SCHEMES

e Start with F5 for a quark:

b 2Re ()/)(\Zg +g/)

"virtual”

Have to combine final states with different phase space . ..



“Plus Distributions’:

[ S [ L= I0)

L—a)s (1— )

| s f(x)<ln(1—x)>+ [ (101 In(1 — )

l—=x (1 — )
and so on . . . where
e f(z) will be parton distributions
e f(x) term: real gluon, with momentum fraction 1 — z

e f(1) term: virtual, with elastic kinematics



A Special Distribution
“DGLAP evolution kernel’ = “splitting function”

2
Wy o Qs |1+
Fag (=) CFZ?T [1—:1:L_

e Will see: P,, a probability per unit log £kt



Expansion and Result:

1
Fiwe) = [ oy (g 2 L asw))

X gbq/q(fa HE, Oés(:u))
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Factorization Scheme

. k2

(1) _
¢q/q(v )_Q_quq(x)/o k—%T

With kr-integral “IR regulated”.
Advantage: technical simplicity; not tied to process.
CW(2)555 = (as/2m) Puy(z) In(Q?/142) + p-independent

This is the matrix element for the
“quark-in-quark distribution”:

dupal€ot) =5 [ Sre e ato.o) L) ™Y ) | atp. )



Using the Regulated Theory
and

Getting Parton Distributions for Real Hadrons

IR-regulated QCD is not REAL QCD

BUT it only differs at low momenta
THUS we can use it for IR Safe functions: C)9, etc.

This enables us to get PDFs for real hadrons . ..



Compute F}9, FJ° ...
Define factorization scheme; find IR Safe (C'’s

Use factorization in the full theory

Fi" = Z C7*® ayn
CL:th',q_f,G

Measure F5; then use the known (s to derive ¢, /N

Multiple flavors and cross sections
complicate technicalities; not logic (Global Fits)

NOW HAVE ¢a/N(€7 /LQ)
USE IT IN ANY OTHER PROCESS THAT FACTORIZES



EVOLUTION

— (Q*-dependence
— In general, Q*/p* dependence still in C,, (2/£,Q%/p?, as(p))
Choose = @

0 = Y [ de s (£1.00@) duale @)

Q > Aqcp — compute C'’s in PT.

cy° (% 1,a3(62)> = (O‘Sff?))n 3" (%)

n

But still need PDFs at ;1 = Q: ¢,,4(¢, Q%) for different Q’s.



— Remarkable result: EVOLUTION

Can use ¢q/4(z,QF) to determine
Payal, Q?) and hence Fi 5 3(x, Q%)
for any Q) !

So long at a,(Q) is still small



— lllustrate by a ‘nonsinglet’ distribution

YNS _ pyp . pyn
Fa _Fa Fa

FNS(2, Q2) = /

T
Gluons, antiquarks cancel

1
de N5 (% % ozs(u)> ons(E, 1)

At one loop: CY8 = 7"



— ‘Mellin’ Moments and Anomalous Dimensions

)= [ e

— Reduces convolution to a product

flz) = /;dy g (g) h(y) — f(N) = g(N) k(N +1)



— Moments applied to NS structure function:

(N, Q%) = ¢ (M%%(u)) dns(N, 1?)
(Note dus(N, u2) = [ deeV f(€, ) here.)

— FJN3(N,Q?) is PHYSICAL

d

NS (N Q%) =0
d,u 2 ( 7@)

=



— ‘Separation of variables’

d _
M@ In pns(IV, MZ) = —ns(V, as(p))
d
’YNS(Nv Mg (:u)) — M@ln C;NS (Nv g (:u))

— Because o, and N are the only variables held in common!



d

han In pns(NV, 1°) = —ns(N, as(w))
sV, () = %mc“s (N, as(12)

— Only need to know (C’s = ~, from IR regulated theory!

4

(Q-DEPENDENCE DETERMINED BY PT

EVOLUTION



THIS WAS HOW WE FOUND OUT QCD IS ‘RIGHT"

THIS IS HOW QCD PREDICTS PHYSICS
AT NEW SCALES

. . . for hard scattering cross sections, and amplitudes



(Hint: (1 —22)/(1—z)=1+z...(1—2")/(1 —z) =Sz

d
WSV, a) = g G (N, (@)
d - :
- M@ { (as/2m) Ppo(N)In(Q*/p?) + p indep. }
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SOLUTION: SCALE BREAKING

d - .
i ons(N, 1?) = —ns(N, as(p)) ons(NV, p1?)

B 2
ns(N, 12) = ns(N, 13 L
NS( nu)_quS( 7MO)><eXp WNS(N7OKS(M))
7

9 % ,LL/2
U
_o~ (D
) i ln(QQ/A2 ) 27N /bo
. N 02 QCD
ons(N, Q%) = ons(V, Q) <1H(Q(2)/A2QCD)>




Hint:

So also:




—2 ](V%)/bo
ons(N, Q%) = ons(N, Qp) (QS(Q(Q)U 7

— ‘Mild’ scale breaking

— For o, — ag # 0, get a power ()-dependence:

20 (1)

(QQ) 27
— QCD'’s consistency with the Parton Model (73-74)



M% Ixs(NV. %) = —yn(as(p) dns(N, 1?)

4

1
jr s, = / % Prs (g,%(u)) Fus (€, 112)

Splitting function <+ Moments

1
/O dz 2™ 7 Pyy(, ) = vgq(N, as)



BEYOND NONSINGLET
COUPLED EVOLUTION

d L g -
o sl = Y / “ p, (gasm)) B/ a6, )

Physical Contxt of Evolution

— Parton Model: ¢,,4(x) density of parton a with
momentum fraction x, assumed independent of ()
— PQCD: ¢, 4(w, 1t): same density, but
with transverse momentum < g



— If there were a maximum transverse momentum (),
each ¢,/, (7, Qo) would freeze for ;1 > Qg

— Not so in renormalized PT

— Scale breaking measures the change in the density
as maximum transverse momentum increases

— Cross sections we compute still depend on our
choice of ;1 through uncomputed “higher orders” in C
and evolution



— Evolution

F>(x,Q%)+offset

in DIS (with CTEQ®6 fits)
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Resummation: the Classic Case: Q1

Every final state from a hard scattering carries the imprint
of QCD dynamics from at all distance scales

Resummation extends evolution reasoning
to control part of this transition.

e Look at transverse momentum distribution at order o,

q(p1) + q(p2) — v (Q) + g(k)

e Treat this 2 — 2 process at lowest order (o) “LO”
in factorized cross section, so that k = —Q



e Factorized cross section at fixed Q:

dO-NN—>p,+p,_+X(Qaplap2) / Z da—a&—>,u+,u_(Q)—|—X(Q7M7§1p17€2p27 QT)
dQ2d2QT 3] dQ2d2QT

X fa/N(fla /) fa/N(an /)

e . is the factorization scale that separates
IR (f) from UV (d&) in quantum corrections.



e The diagrams at order o,. Finite for Qr #0 . ..

Gluon emission cont

ributes at Q1 # 0

)

Virtual corrections c

ontribute only at ) =0




~ (1 _
do-((ztj)—vy*g B QSCF (1 B 4Q% 1/2
(

A2 2Q, V2 1 — 2)26,655

Qr1-2 (1-2)Q7

[11+22 2z ]
X

as long as Q1 # 0, 2 = Q?/£,65 # 1.

. an%
Q7

QT integral — ln§1_;z); z integral




The leading singularity in Q7

e 2 integral: If Q%/S not too big, PDFs nearly constant:

1 /1—‘%2%/@2 dz 1 [ Q? ]
_ — _ _In | =
QQT 1—Q2/s 11—z QT Q

= Prediction for ()7 dependence:

dO-NN—>,u+,u_—|—X(Q7 QT) a,Crp 1 In [ Q2 ]

dQ2d*Qy T Q| Q2

da—a&—> + (Q):u)
" azq:q/1§2 - Mdé‘?Q;—i_X fa/N(§1mu> fa//N(£27lLl/)




o Compare to: Z DT (from Kulesza, G.S., Vogelsang (2002))

| \
sft | do/dQy (pb/GeV) T oo -

Resum: \ 66 < Q< 116 GeV
P —

\ L. Exclusive Limit

e In Q7 /Qr1 works pretty well for large Q1

e But at smaller ()7 reach a maximum, then a decrease
near “exclusive” limit (parton model kinematics)

e Most events are at “low” Q1 < QQ = my.



Getting to Q1 < (Q: Transverse momentum resummation
(Logs of Q7)/Qr to all orders
How? Variant factorization and separation of variables

g and ¢ “arrive” at point of annihilation with transverse
momentum of radiated gluons in initial state.

q and ¢ radiate independently (fields don’t overlap!).

Final-state QCD radiation too late to affect cross section

dO-NN—>,u‘|‘M_—|—X(Q7 QT)

dQ?*d*Qr




Summarized by: ()p-factorization:

donN—
dg?l;QCz[’X N /dfldfz ki 7d*kord*ker 0 (Qr — ki — kot — k)

x H(&1p1, &2p2, Qn)aa—qrx
XPo/n(&1s01 -1, ki) Payn (&2, 02 - 1y ko) Uga(ksT, )

The P’s: new Transverse momentum-dependent PDFs

Also need U: “soft function” for wide-angle radiation



Symbolically:

AdoONN—QX

dQd*Qr

= H X Pa/N('fl,pl -n, ki) Pa/N(527p2 -n, kar)
®€iakiT Uad(ksTa n)
We will solve for the k1 dependence of the P’s.

New factorization variables: n* apportions gluons k:

pick<n-k = k €P;
Do k,pa-k > n-k = kelU

Convolution in k; s = Fourier ¢/97"



The factorized cross section in “impact parameter space”:

donn—ox(@,b)
e / 4é,dé

X H(&1p1, ap2, @n)aa—Q+x
XPa/n(&1,p1 -1, 0) Payn(§2, 02 - 1, b) Uga(b, n)

Now we can resum by separating variables!

the LHS independent of i..,, n = two equations

do do
ren ; 0 *—— =0
: dfiren " dne



Method of Collins and Soper, and Sen (1981)

Change in jet must cancel change in (UV) H and (IR) U:

- 0
op-n

p In P(p-n/p,bp) =Gp-n/p)+ K(bp)

G matches H, K matches U. Renormalization indep. of n*:

u%[ap-n/mw(bun:o
M%G(P'n/ﬂ) — Afas(n) = - N%K(bu)

Solve this one first. ; in o, varies (& o, need not be small).



p-n d,u/
_/ — Aa(as(p'))
1/6 M

The consistency equation for the jet becomes

.n a
b op-n

In P(p-n/p,bp) =G(p-n/u)+ K(p/p-n)

p-ndlu/
- / A a(u))
1/b M

nIn*" " HQ/Qr)
S QT )

Integrate p - n and get double logs in b — «



Transformed solution back to ()7: all the (Logs of QO1)/Qr,
Which fits the data; (viz. RESBOS; Yuan, Nadolsky et al.)

Ao N Nroe d*b .57
SN =3 Hua(0u(@) [ iz ¥ Texp [EET(0.Q)]

dQ2d2QT . (27)2
da'aa_>u+,u—(Q)—|—X(Q7M) b £ b
X azq:qulé 10 fayn(€1,1/0) fa/n(§2,1/b)

“Sudakov”’ exponent links large and low virtuality:

Q? ;1.2 2
Br = [ 2 [2Aq<cvs<kT>> In (%) +2Bq<as<kT>>]
1/b2 kT kT

With B = 2(K + G),,—p.n, and lower limit: 1/b (NLL)



SUMMARY

e Specific problems for perturbation theory in QCD

1. Confinement

/ e (0| T[pa(x) . .. ]|0)

has no ¢° = m? pole for ¢, that
transforms nontrivially under color (confinement)
2. The pole at p? = m?

T

/ &9 (0] Tl (x) ... ]10)

iIs not accessible to perturbation theory



e Response: use infrared safety & asymptotic freedom:

Q% 6sp(Q° 1, as(1)) = D eal@Q%/p?) @M (1) + O (1/Q")

n

3 en(1) (@) + O (1/Q7)

n

e What can we really calculate? PT for color singlet operators

— [e'*(0| T[J(x)J(0)...]|0) for color singlet currents

eTe” total ... no QCD in initial state



— Jet cross sections are from matrix elements also:

lim [ dug / div S(i) e=99(0] J(0YT i Tos (o, RiV)J ()] 0)

R— o0

Where the operator 7;;; measures momentum flow

“Weight” S(n) introduces no new dimensional scale
Short-distance dominated if all d*S/dn"* bounded

Individual final states have IR divergences, but these
cancel in sum over collinear splitting/merging and
soft parton emission because they respect energy flow

But what of the initial state? (viz. parton model)



e Factorization

Q*0phys(Q,m) = wsp(Q/ 1, (1)) ® dLp(p,m) + O (1/QP)
— 1 = factorization scale; m= IR scale
— New physics in wsp; ¢o.p = f and/or D “universal”
— ep DIS inclusive, pp — jets, QQ, 7(pr), DVCS . ..

— Exclusive limits: e7e™ — as mj; —
Excl limits: e™ JJ 0



e Whenever there is factorization, there is evolution

d
0= ,u@ In opnys(Q,m)

dIn(¢or D) dlnw
H d —
[

|
|
<
R
=
||
|
=

PDF ¢ or Fragmentation D

e Wherever there is evolution there is resummation

Q /
I e (Q, m) = exp { / %P <as<u'>>}



e Appendix: Basis of Factorization proofs:
— (1) wsp incoherent with long-distance dynamics

— (2) Mutual incoherence when v, = c:
Jet-jet factorization.

— (3) Wide-angle soft radiation sees only total color flow:
jet-soft factorization.

— (4) Dimensionless coupling and renormalizability
< no worse that logarithmic divergence in the IR:
suppression even by a fractional power = finiteness



— Hadron-Hadron Factorization Heuristic, classical argument:

>
§=))) 0

4 >
X; ~ cpt’

A = Bet’ —



)8

X5 ~ cBt’

field

scalar
gauge

field strength

x frame

' frame

q
(z2.+~2A2)1/2

AV(z") = ay

B (33%+72A2)1/2

—qvA
E:’g(:z:’) = (a;%—l—Wq;A2)3/2




— Classical: Lorentz contracted fields of incident particles
don’t overlap until the moment of the scattering,
creation of heavy particle, etc.!

— Initial-state interactions decouple from the hard process

— Summarized by multiplicative factors:
parton distributions

— Evolution of partons to jets/hadrons too late
to know details of the hard scattering

— Summarized by multiplicative factors:
fragmentation functions

— “Left-over” cross section for hard scattering is IR safe



